Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc.
نویسندگان
چکیده
Iron homeostasis is achieved by regulating the intestinal absorption of the metal and its recycling by macrophages. Iron export from enterocytes or macrophages to blood plasma is thought to be mediated by ferroportin under the control of hepcidin. Although ferroportin was identified over a decade ago, little is understood about how it works. We expressed in Xenopus oocytes a human ferroportin-enhanced green fluorescent protein fusion protein and observed using confocal microscopy its exclusive plasma-membrane localization. As a first step in its characterization, we established an assay to detect functional expression of ferroportin by microinjecting oocytes with (55)Fe and measuring efflux. Ferroportin expression increased the first-order rate constants describing (55)Fe efflux up to 300-fold over control. Ferroportin-mediated (55)Fe efflux was saturable, temperature-dependent (activation energy, Ea ≈ 17 kcal/mol), maximal at extracellular pH ≈ 7.5, and inactivated at extracellular pH < 6.0. We estimated that ferroportin reacts with iron at its intracellular aspect with apparent affinity constant < 10(-7) M. Ferroportin expression also stimulated efflux of (65)Zn and (57)Co but not of (64)Cu, (109)Cd, or (54)Mn. Hepcidin treatment of oocytes inhibited efflux of (55)Fe, (65)Zn, and (57)Co. Whereas hepcidin administration in mice resulted in a marked hypoferremia within 4 h, we observed no effect on serum zinc levels in those same animals. We conclude that ferroportin is an iron-preferring cellular metal-efflux transporter with a narrow substrate profile that includes cobalt and zinc. Whereas hepcidin strongly regulated serum iron levels in the mouse, we found no evidence that ferroportin plays an important role in zinc homeostasis.
منابع مشابه
Effects of various metal ions on the gene expression of iron exporter ferroportin-1 in J774 macrophages
Macrophages play a key role in iron metabolism by recycling iron through erythrophagocytosis. Ferroportin-1 (FPN1) is a transporter protein that is known to mediate iron export from macrophages. Since divalent metals often interact with iron metabolism, we examined if divalent metals could regulate the expression of FPN1 in macrophages. J774 macrophage cells were treated with copper, manganese,...
متن کاملInvestigation of the biophysical and cell biological properties of ferroportin, a multipass integral membrane protein iron exporter.
Ferroportin is a multipass membrane protein that serves as an iron exporter in many vertebrate cell types. Ferroportin-mediated iron export is controlled by the hormone hepcidin, which binds ferroportin, causing its internalization and degradation. Mutations in ferroportin cause a form of the iron overload hereditary disease hemochromatosis. Relatively little is known about ferroportin's proper...
متن کاملCadmium depletes cellular iron availability through enhancing ferroportin translation via iron responsive element.
Cadmium (Cd) is a heavy metal that has detrimental effects on various organs. The widespread contamination of Cd in the environment, crops and food sources poses a severe threat to human health. Acute toxicities of Cd have been extensively investigated; however, the health impact of chronic low‑dose exposure to Cd, particularly exposure under non‑toxic concentrations, has yet to be elucidated. ...
متن کاملPrimary iron overload with inappropriate hepcidin expression in V162del ferroportin disease.
Ferroportin disease (hemochromatosis type 4) is a recently recognized disorder of human iron metabolism, characterized by iron deposition in macrophages, including Kupffer cells. Mutations in the gene encoding ferroportin 1, a cellular iron exporter, are responsible for this iron storage disease, inherited as an autosomal dominant trait. We present clinical, histopathological, and radiological ...
متن کاملIroning out Ferroportin.
Maintaining physiologic iron concentrations in tissues is critical for metabolism and host defense. Iron absorption in the duodenum, recycling of iron from senescent erythrocytes, and iron mobilization from storage in macrophages and hepatocytes constitute the major iron flows into plasma for distribution to tissues, predominantly for erythropoiesis. All iron transfer to plasma occurs through t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 306 5 شماره
صفحات -
تاریخ انتشار 2014